Core 2 Sequences Questions

 $u_{n+1} = pu_n + q$

The *n*th term of a sequence is u_n .

The sequence is defined by

where p and q are constants.

The first three terms of the sequence are given by

 $u_1 = 200$ $u_2 = 150$ $u_3 = 120$ Show that p = 0.6 and find the value of q. (5 marks) Find the value of u_4 . (1 mark) The limit of u_n as n tends to infinity is L. Write down an equation for L and hence find the value of L. (3 marks) The first term of an arithmetic series is 1. The common difference of the series is 6. (a) Find the tenth term of the series. (2 marks) (b) The sum of the first *n* terms of the series is 7400. Show that $3n^2 - 2n - 7400 = 0$. (3 marks) (ii) Find the value of n. (2 marks) (a) The expression $(1-2x)^4$ can be written in the form $1 + px + qx^2 - 32x^3 + 16x^4$ By using the binomial expansion, or otherwise, find the values of the integers p and q. (3 marks) Find the coefficient of x in the expansion of $(2+x)^9$. (2 marks) Find the coefficient of x in the expansion of $(1-2x)^4(2+x)^9$. (3 marks)

5	The	second term of a geometric series is 48 and the fourth term is 3.	
	(a)	Show that one possible value for the common ratio, r , of the series is $-\frac{1}{4}$ and other value.	state the
	(b)	In the case when $r = -\frac{1}{4}$, find:	
		(i) the first term;	(1 mark)
		(ii) the sum to infinity of the series.	(2 marks)
7	(a)	The first four terms of the binomial expansion of $(1+2x)^8$ in ascending power are $1+ax+bx^2+cx^3$. Find the values of the integers a , b and c .	ers of x (4 marks)
	(b)	Hence find the coefficient of x^3 in the expansion of $\left(1 + \frac{1}{2}x\right)(1 + 2x)^8$.	(3 marks)
2	The	n th term of a geometric sequence is u_n , where	_
		$u_n = 3 \times 4^n$	
	(a)	Find the value of u_1 and show that $u_2 = 48$.	(2 marks)
	(b)	Write down the common ratio of the geometric sequence.	(1 mark)
	(c)	(i) Show that the sum of the first 12 terms of the geometric sequence is 4^k where k is an integer.	– 4, (3 marks)
		(ii) Hence find the value of $\sum_{n=2}^{12} u_n$.	(1 mark)
4	An a	arithmetic series has first term a and common difference d .	_
	The	sum of the first 29 terms is 1102.	
	(a)	Show that $a + 14d = 38$.	(3 marks)
	(b)	The sum of the second term and the seventh term is 13.	
		Find the value of a and the value of d .	(4 marks)

Core 2 Sequences Answers

5(a)	150 = 200p + q	M1		Either equation
	120 = 150 p + q	A1		Both (condone embedded values for the M1A1)
		m1		Valid method to solve two simultaneous eqns in p and q to find either p or q
	p = 0.6	A1		AG (condone if left as a fraction)
	q = 30	B1	5	
(b)	$u_4 = 102$	B1F√	1	Ft on $(72 + q)$
(c)		M1		
	$L = \frac{q}{1 - p}$	m1		
	L = 75	A1F√	3	Ft on 2.5q
	Total		9	

3(a)	(Tenth term) = $a + (10-1) d$	M1		
	= 1 + 9(6) = 55	A1	2	NMS or rep. addn. B2 CAO
				SC if M0 award B1 for 6n-5 OE
(b)(i)	$S_n = \frac{n}{2} [2 + (n-1)6]$	M1		Formula for $\{S_n\}$ with either $a = 1$ or $d = 6$ substituted
	$\frac{n}{2}[2+6n-6] = 7400$	A1		Eqn formed with some expansion of brackets
	$3n^2 - 2n = 7400 \Rightarrow 3n^2 - 2n - 7400 = 0$	A1	3	CSO AG
(ii)	(3n+148)(n-50)=0	M1		Formula/factorisation OE
	$\Rightarrow n = 50$	A1	2	NMS single ans. 50 B2 CAO NMS 50 and -49.3(3) B1 CAO
	Total		7	

4(a)	$(1-2x)^4 = (1)^4 + 4(1)^3 (-2x) + 6(1^2)(-2x)^2 + [4(1)(-2x)^3 + (-2x)^4]$	M1		Any valid method as far as term(s) in x and term(s) in x^2 .
	$= [1] - 8x + 24x^2 + [-32x^3 + 16x^4]$	A1		p = -8 Accept $-8x$ even within a series.
		A1	3	$q = 24$ Accept $24x^2$ even within a series.
(b)	$x \text{ term is } \binom{9}{1} 2^8 x$	M1		OE
	Coefficient of x term is = $9 \times 2^8 = 2304$ (=k)	A1	2	Condone 2304x
(c)	$(1-2x)^4 (2+x)^9 = (1+px+)(2^9+kx)$	M1		Uses (a) and (b) oe (PI)
	= =+ $kx + px(2^9) +$	M1		Multiply the two expansions to get x terms
	Coefficient of x is $k + 512p$			
	= 2304 - 4096 = - 1792	A1ft	3	ft on candidate's values of k and p . Condone $-1792x$
				SC If 0/3 award B1ft for p+k evaluated
	Total		8	

5(a)	40 ³ - 2	D1		Eid OE
S(a)	$ar = 48; ar^3 = 3$	B1		For either, OE
	$\Rightarrow 16r^2 = 1$	M1		Elimination of a OE
	$\Rightarrow 16r^2 = 1$ $r^2 = \frac{1}{16} \Rightarrow r = -\frac{1}{4}$	A1		CSO AG Full valid completion. SC Clear explicit verification (max B2 out of 3.)
	or $r = \frac{1}{4}$	B1	4	
(b)(i)	a = -192	B1	1	
(ii)	$\frac{a}{1-r} = \frac{a}{1-\left(-\frac{1}{4}\right)}$	M1		$\frac{a}{1-r}$ used
	$S_{\infty} = \frac{-768}{5} \ (= -153.6)$	A1ft	2	Ft on candidate's value for a . i.e. $\frac{4}{5}a$
				SC candidate uses $r = 0.25$, gives $a = 192$ and sum to infinity = 256.
				(max. B0 M1A1)
	Total		7	

7(a)	$(1+2x)^{8}$ =1+\binom{8}{1}(2x)^{1}+\binom{8}{2}(2x)^{2}+\binom{8}{3}(2x)^{3}+\binom{8}{3}(M1		Any valid method. PI by correct value for a , b or c
	$= 1 + 16x + 112x^2 + 448x^3 + \dots$	A1A1		A1 for each of a, b, c
	${a=16, b=112, c=448}$	A1	4	
(b)	x^3 terms from expn. of $\left(1 + \frac{1}{2}x\right) (1 + 2x)^8$			
	are cx^3 and $\frac{1}{2}x(bx^2)$	M1		Either
	$cx^3 + \frac{1}{2}x(bx^2)$	A1		b,c or candidate's values for b and c from (a)
	Coefficient of x^3 is $c + 0.5 b = 504$	A1ft	3	Ft on candidate's $(c + 0.5b)$ provided b and c are positive integers >1
	Total		7	

2(a)	$u_1 = 12 u_2 = 3 \times 4^2 = 48$	B1 B1	2	CSO AG (be convinced)
(b)	r = 4	В1	1	
(c)(i)	$\{S_{12} = \} \frac{a(1-r^{12})}{1-r}$ $= \frac{12(1-4^{12})}{1-r}$	M1		OE Using a correct formula with $n = 12$
	$= \frac{12\left(1-4^{12}\right)}{1-4}$	A1ft		Ft on answer for u_1 in (a) and r in (b)
	$= \frac{12(1-4^{12})}{-3} = -4(1-4^{12}) = 4^{13}-4$	A1	3	CAO Accept $k = 13$ for 4^{13} term
(ii)	$\sum_{n=2}^{12} u_n = (4^{13} - 4) - u_1$			
	n-2 = 67108848	B1	1	
	Total		7	

4(a)	$\{S_{29} = \} \frac{29}{2} [2a + 28d]$	M1		Formula for S_n with $n = 29$ substituted and with a and d
	29 (a + 14d) = 1102	m1		Equation formed then some manipulation
	$29 (a + 14d) = 1102$ $a + 14d = \frac{1102}{29} \implies a + 14d = 38$	A1	3	CSO AG
(b)	$u_2 = a + d u_7 = a + 6d$	B1		Either expression correct
	$u_2 = a + d$ $u_7 = a + 6d$ $u_2 + u_7 = 13 \Rightarrow 2a + 7d = 13$	M1		Forming equation using $u_2 \& u_7$ both in form $a + kd$
	e.g. $21d = 63$; $3a = -12$	m1		Solving $a + 14d = 38$ with candidate's ' $2a + 7d = 13$ ' to at least stage of elimination of either a or d
	a = -4 $d = 3$	A1	4	Both correct
	Total		7	